Migrate to a 40-Gbps Data Center…with Cisco QSFP BiDi Technology
Cisco’s QSFP 40G BiDi (bidirectional) transceiver, allows zero-cost fiber migration by reusing the current 10-Gbit/sec cabling for 40-Gbit/sec device connectivity. With duplex LC ports, it enables 100 meters of 40G transmission over OM3, 125 meters over OM4 fiber, and 150 meters over certain “OM4+” fibers.
Migrate to a 40-Gbps Data Center with Cisco QSSFP BiDi Technology? Cisco makes the case for its transceiver technology, taking direct aim at “the need for a major upgrade of the cabling infrastructure” when transitioning from 10G to 40G, “which can be too expensive or disruptive to allow data centers to quickly adopt and migrate to the 40-Gbit/sec technology.”
“Existing short-reach transceivers for 40-Gbit/sec connectivity in a QSFP form factor … use independent transmitter and receiver sections, each with 4 parallel fiber strands. For a duplex 40-Gbit/sec connection, 8 fiber strands are required.
Both QSFP SR4 and QSFP CRS4 use MPO 12-fiber connectors. As a result, 4 fiber strands in each connection are wasted.
“With existing QSFP transceivers, each direct connection between two devices requires an MPO-to-MPO 12-fiber cable. In the case of structured cabling with patch panels and fiber trunks, a 40-Gbit/sec connection needs MPO-to-MPO fibers between devices and patch panels, and 4 duplex multimode fibers in the fiber trunk.
“In most of today’s data center networks, the aggregation fiber infrastructure is built for 10Gbit/sec connectivity that either supports direct connections between devices over LC-to-LC multimode fiber or uses LC-to-LC fibers to attach devices to patch panels and provides one duplex multimode fiber in the fiber trunk for each 10-Gbit/sec connection.
“40-Gbit/sec connectivity using traditional 40-Gbit/sec transceivers cannot reuse directly connecting LC-to-LC fibers. It also requires four to six times greater fiber density in the fiber trunks to meet the requirements of a 40-Gbit/sec connection. These characteristics make it expensive for customers to migrate from 10-Gbit/sec connectivity to 40-Gbit/sec connectivity in their existing data centers.
“The Cisco QSFP BiDi transceiver addresses the challenges of fiber infrastructure by providing the capability to transmit full-duplex 40 traffic over one duplex multimode fiber cable with LC connectors. In other words, the Cisco QSFP BiDi transceiver allows 40-Gbit/sec connectivity to reuse the existing directly connecting 10-Gbit/sec fibers and the existing fiber trunk without the need to add any fibers.”
The technical paper details two deployment scenarios/case studies to emphasize the savings accomplished by eliminating the parallel-optic cabling infrastructure. The first scenario is a 288x40G setup with unstructured cabling. The second is a 384x40G setup with structured cabling. In this second scenario, the paper explains, “Cisco QSFP BiDi technology allows the existing cabling system—including the patch cables, patch panels with MTP/MPO LC modules, and fiber trunks—to be repurposed for 40-Gbit/sec connectivity. In contrast, QSFP SR4 transceivers require new patch cables and patch panels because the connector types differ and the size of the fiber trunk needs to be quadrupled.”
From http://www.cablinginstall.com/articles/2014/03/cisco-qsfp-bidi.html
“Migrate to a 40-Gbps Data Center with Cisco QSFP BiDi Technology” you can read the full paper report at
More benefits you can get from migrating to 40-Gbps Data Center with Cisco QSFP BiDi Technology
Benefits
• Reuse existing 10GE fiber infrastructure for 40GE migration
• Lower CapEx and installation labor costs
• Minimal disruption to the data center during migration
• Four times the bandwidth over the same fiber plant
• Up to 70% savings over other current solutions
Cisco’s innovative 40-Gbps Quad Small Form-Factor Pluggable (QSFP) bidirectional (BiDi) transceiver is a pluggable optical transceiver with a duplex LC connector interface for short-reach data communication and interconnect applications. By using the existing 10 Gigabit Ethernet duplex MMF fiber infrastructure for 40 Gigabit Ethernet, the Cisco BiDi transceiver offers significant cost savings and simplifies data center upgrading.
The Cisco BiDi transceiver supports link lengths of 100m and 150m on laser-optimized OM3 and OM4 multimode fibers. It complies with the QSFP MSA specification, enabling customers to use it on all QSFP 40-Gbps platforms to achieve high-density 40 Gigabit Ethernet networks.
Use Your Existing 10 Gigabit Ethernet Fiber for 40 Gigabit Ethernet
Whether your cable plant is structured or unstructured, Cisco’s BiDi transceiver delivers significant savings and a smooth migration to 40 Gigabit Ethernet. The Cisco BiDi transceiver enables the use of an existing 10 Gigabit Ethernet fiber plant infrastructure for 40 Gigabit Ethernet, delivering four times the bandwidth over the same fiber plant and up to 70% savings over other current solutions.
For building out new data centers, deploying 40 Gigabit Ethernet for aggregation and core is no longer an option but a requirement to meet today’s data demands. Designing new cable plants using Cisco’s BiDi transceivers offers:
• 75% less fiber and MPO requirements
• Reduced cable sprawl and rack footprints
• Cost savings with the industry’s lowest-priced 40 Gigabit Ethernet transceiver
•Investment protection with future support for 100 Gbps over duplex fiber
Designing your new fiber cable plant with Cisco’s 40 Gigabit Ethernet BiDi transceiver allows you to reduce your fiber requirements and CapEx and OpEx while future proofing your data center for 100 Gigabit Ethernet.
Cisco’s QSFP 40 Gigabit Ethernet BiDi technology removes 40-Gbps cabling cost barriers for migration from 10-Gbps to 40-Gbps connectivity in data center networks. Cisco’s BiDi transceivers provide simpler and less expensive 40-Gbps connectivity compared to other 40-Gbps transceiver solutions. The Cisco QSFP BiDi transceiver allows organizations to migrate their existing 10-Gbps cabling infrastructure to 40 Gbps with little capital investment.
More Related: Move to 40G Today? Yes!