Overblog Follow this blog
Administration Create my blog
Cisco & Cisco Network Hardware News and Technology

Posts with #cisco wireless - cisco wireless ap tag

The New Generation of Cisco Aironet Access Points

January 2 2013 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Wireless - Cisco Wireless AP

Second-Generation 802.11n Access Points

Video promises life-like remote communications. Cloud computing promises agility and reduced costs. Tablets and smartphones promise new employee and customer engagement. Overall, technology tantalizes consumers and businesses alike with the promise of transformation. But the reality of an IT manager is more complicated. There is a high rate of change in the mobility and networking industry, making it difficult for yesterday’s networks to adapt. And as mobility becomes a user imperative, new use cases with conflicting security and technical requirements emerge.

 

To address these needs, Cisco has evolved the previous line of access points (the Cisco Aironet 1040, 1140, 1260, and 3500 Series) by offering a new line of second generation 802.11n access points—the Cisco Aironet 3600, 2600, and 1600 Seriesthat can extend spectrum intelligence, antenna density, and client acceleration to new price points in the mainstream.

 

The second-generation Cisco Aironet access point portfolio is designed for a broad range of requirements for best-in-class, mission-critical, and enterprise-class service to provide industry-leading performance for secure and reliable wireless connections.

 

Whether you require entry-level wireless connectivity for a small enterprise, missioncritical coverage at thousands of locations, or best-in-class performance with future proof expansion for emerging technologies such as 802.11ac, you can rely on Cisco’s broad portfolio of access points to meet the needs of specific industries, business types, and topologies.

 

The Cisco Aironet Access Points come in standalone or controller-based models to support the unique requirements for scale and mobility services. Controllers reduce overall operational expenses by simplifying network deployment, operations, and management. They allow network administrators to remotely configure and monitor several access points to thousands of access points in a simple and efficient way. A controller is required to support voice, location services, guest access, and advanced security. Controller-based access points also support Cisco OfficeExtend for secure remote teleworking and enterprise wireless mesh, which allows access points to dynamically establish wireless connections in hard-to-connect locations.

 

A wireless network with standalone access points offers a low-cost, entry-level solution that does not require a controller. It is ideal for small-scale networks with less than 10 access points, and offers base-level wireless functionality with the flexibility to scale and add services over time by adding a controller.

 

Cisco Aironet 3600 Series: Best in Class

Figure1. Cisco Aironet 3600 Series Access Points

Cisco-Aironet-3600-Series-Access-Points.jpg

The Cisco Aironet 3600 Series Access Point (Figure 1) delivers the highest level of 802.11n performance, with expansion capability for emerging technologies such as 802.11ac. The 3600 Series offers better coverage and security in dense-client, high bandwidth networks that utilize applications such as HD video and virtual desktop infrastructure (VDI).

Highest 802.11n performance with Cisco CleanAir technology for a self-healing, self-optimizing wireless network

The industry’s first 4 x 4 multiple-input multiple-output (MIMO) access point with three spatial streams

Future-proof modularity, providing flexible upgrades and add-on options for 802.11ac or Wireless Security and Spectrum Intelligence (WSSI) Module and other future technologies

Cisco ClientLink 2.0, optimizing performance for tablets, smartphones, and laptops and all 802.11n one-, two-, and three-spatial stream devices, as well as legacy 802.11a/g clients

Standard 802.3af Power over Ethernet (PoE)

The 3600i model has integrated antennas for typical office deployments

 

The 3600e model is for RF-challenging indoor environments and requires external dual-band antennas. (For more information about antennas, visit: Antenna Product Portfolio for Cisco Aironet 802.11n Access Points.)

 

Cisco Aironet 2600 Series: Mission-Critical

Figure2. Cisco Aironet 2600 Series Access Points

Cisco-Aironet-2600-Series-Access-Points.jpg

The Cisco Aironet 2600 Series Access Point (Figure 2) is bring-your-own-device (BYOD)-optimized for connectivity to any client device. Second only to the Cisco Aironet 3600 Series in performance and features, the Cisco Aironet 2600 Series sets the new standard for enterprise wireless technology. This mission-critical access point delivers Cisco’s RF excellence features such as Cisco CleanAir and ClientLink 2.0 technology for any small, medium-sized, and large enterprise network.

Delivers the most advanced features in its class, with great performance, functionality, and reliability at a great price

Includes 802.11n-based 3 x 4 MIMO, with three spatial streams

Includes Cisco CleanAir, ClientLink 2.0, and VideoStream technologies, to help ensure an interference-free, high-speed wireless application experience

Standard 802.3af PoE

The 2600i model has integrated antennas for typical office deployments

The 2600e model is for RF challenging indoor environments and requires external dual-band antennas. (For more information about antennas, visit: Antenna Product Portfolio for Cisco Aironet 802.11n Access Points.)

 

Cisco Aironet 1600 Series: Enterprise Class

Figure3. Cisco Aironet 1600 Series Access Points

Cisco Aironet 1600 Series Access Points

The Cisco Aironet 1600 Series is an entry-level, enterprise-class 802.11n-based access point designed to address the wireless connectivity needs of small and midsize enterprise networks.

With at least six times the throughput of existing 802.11a/g networks, the 1600 Series offers the performance advantage of 802.11n enterprise-class performance with 3 x 3 MIMO technology with two spatial streams

Provides efficient wireless coverage through Clean Air Express* client acceleration for entry level networks that have a mixed legacy and non-legacy client base

(*planned for future support)

Standard 802.3af PoE

The 1600i model has integrated antennas for typical office deployments

The 1600e model is for RF-challenging indoor environments and requires external dual-band antennas. (For more information about antennas, visit: Antenna Product Portfolio for Cisco Aironet 802.11n Access Points.)

 

The Cisco Advantage

Cisco has true enterprise-class RF technology designed to maximize 802.11n performance. Cisco technologies such as CleanAir, ClientLink 2.0, and VideoStream, plus optimized access point radios and antennas, improve performance regardless of where client devices are located. All Cisco Aironet 802.11n access points support:

A limited lifetime hardware warranty

5- or 10-unit Eco-Pack bundles with a single, easy-to-open carton that streamlines the staging and installation process and reduces packaging waste by 50 percent

Mounting brackets that can be easily retrofitted to existing Cisco legacy access points to minimize migration cost and time

The benefits of deploying Cisco Aironet access points with a Cisco Unified Wireless Network extend from investment protection and future-proofing to better scalability and reliability of the enterprise network. For more details, visit: www.cisco.com/go/wireless.

 

Cisco Aironet 600 Series OfficeExtend Access Point

Figure4. Cisco Aironet 600 Series OfficeExtend Access Point

Cisco-Aironet-600-Series-OfficeExtend-Access-Point.jpg

Purposely designed for the teleworking environment, Cisco Aironet 600 Series Office Extend Access Points (Figure 4) deliver always-on, secure access to networked business services from the remote home office. The access point connects to the home’s broadband Internet access and establishes a secure tunnel to the corporate network so that remote employees can access data, voice, video, and cloud services for a mobility experience consistent with that at the corporate office.

802.11n access points for reliable, secure teleworking

Zero-touch deployment at the home office speeds setup time

Dual-band support uses all available spectrum to help avoid congestion caused by home devices

Supports corporate and personal network activity with traffic segmentation

 

Table 1 compares the features of new Cisco Aironet 802.11n access points.

Table1. Cisco Aironet 802.11n Access Point Comparison Chart

 Cisco-Aironet-802.11n-Access-Point-Comparison-Chart1.jpg

Cisco-Aironet-802.11n-Access-Point-Comparison-Chart2.jpg

Reference PDF from http://www.cisco.com/en/US/prod/collateral/wireless/ps5678/ps10981/at_a_glance_c45-636090.pdf

More Cisco Aironet Access Point Info and Tips:

What You Should Pay Attention to Cisco Aironet Access Point While Purchasing?

Antenna Product Portfolio for Cisco Aironet 802.11n Access Points

General Questions Help You Realize Cisco Aironet 1250 Series Access Point

Read more

Basic Spanning Tree Protocol (STP) Information

November 26 2012 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Wireless - Cisco Wireless AP

STP is used by switches to prevent loops occurring on a network, this process is implemented by using spanning tree algorithm in disabling unwanted links and blocking ports that could cause loop.

 

Loops and duplicate frames can have severe consequences on a network. Most LANs are designed to provide redundancy so that if a particular link fails another one can take over the forwarding of frame across the LAN.

 

Basically, each switch port on a network detects the MAC address of a host or PC A, it then sends messages to other switches on the network to inform them of it’s knowledge on how to get to PC A. The problem starts when another switch discovers the same host or PC A’s MAC address, In time every switch on the network will start flooding messages on the network of their discovery and how to get to the same PC A and a loop has formed.

 

STP Standards / Types 

STP ensures that there is only one logical path between all destinations on the network by intentionally blocking redundant paths that could cause a loop.

 

When a switch port detects a loop in the network, it blocks (A port is considered blocked when network traffic is prevented from entering or leaving that port) one or more redundant paths to prevent a loop forming.

 

To stop a loop from forming, STP chooses one switch to be Root Bridge on the network. Then other switches selects one of its ports as Root Port then, a designated port’ is chosen on each segment and all other ports are closed down.

 

STP outline of Process

STP-outline-of-Process.jpg

 
Cisco switches runs STP by default, no configuration needed.

 

STP continually monitors the network for failures, be it switchports or changes in the network topology. STP acts quickly in making redundant ports available if there is a failure on a link.

 

Spanning Tree Protocol 

*Used by switches to turn a redundant topology into a spanning tree.

*Disables unwanted links by blocking ports

*Is defined by IEEE 802.1d

*Switches run STP by default - configuration needed.

*Choose one switch to be Root Bridge

*Choose a Root Port on each other switch

*Choose a Designated Port on each segment

*Intentionally closes down all other ports

 

More STP Info:

Spanning Tree Protocol Standards /Types

STP (Spanning Tree Protocol) Path Selection

Read more

How to Trace a Layer 2 Path on Cisco Nexus Switches?

August 31 2012 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Wireless - Cisco Wireless AP

Ever been stuck trying to figure out the exact switching path that packets take through your network? Me too. Here’s how I solved the problem without fancy Layer 2 traceroute tools.

 

I’ve recently been working in a data center environment with Nexus 7000 and 5000 switches in the core. The core is almost completely Layer 2, with most routing pushed to the distribution layer. During the first week, we ran into a problem forwarding jumbo frames. Some vlans that used jumbo frames worked fine, but one vlan simply wouldn’t work. The network team went to some effort to prove our innocence, and there was the usual veiled finger-pointing by everyone else, “I’m not saying it’s a network problem, but…” Yeah, yeah, we know: the network is assumed guilty until proven innocent.

 

In my experience, troubleshooting jumbo frames begins simply. Either every device in the forwarding path allows jumbo packets, or they don’t. If just one interface in the path doesn’t allow jumbo frames, the conversation breaks. So the crucial first question is “what is the path?”

 

In a routed environment, this would be a no-brainer: traceroute would have your answer. But this is a Layer 2 environment. What I needed was a layer 2 traceroute tool. Turns out Cisco does offer a Layer 2 traceroute utility for IOS on both the Cisco 7600 series routers and Catalyst 3560 series switches. It’s been around since 12.2(18) and you can use either MAC address or IP address to run the trace.

 

However, it didn’t work in NX-OS. And I did try. Several times. Just to be sure.

 

So, what was left was a manual Layer 2 trace, which means manually searching through the mac address-tables. Kind of cumbersome, but still doable. It was going to be tricky though, since the core switches were using both port-channels and virtual port-channels. The command mac address-table alone was not going to cut it, as sometimes the switch would see the MAC address over a port-channel, and I’d need to know which interface in the port channel had forwarded the packet.

 

However, before jumping in, I needed the source and destination MAC addresses, as well as source and destination IP address (more on this later). Once the sever team provided all these, I began by finding the exact source switch and interface:

 

sh mac address-table | inc AAAA.AAAA.AAAA

SWITCH-A# sh mac address-table | inc AAAA.AAAA.AAAA

   VLAN     MAC Address      Type      age  Secure NTFY   Ports

---------+-----------------+--------+------+------+----+------------

* 200      AAAA.AAAA.AAAA    dynamic   10      F    F     Eth101/1/2

 

Once the originating switch and port was identified, I could begin looking for the path to the destination. On the source switch, I ran:

sh mac address-table | inc BBBB.BBBB.BBBB

 

SWITCH-A# sh mac address-table | inc BBBB.BBBB.BBBB

   VLAN     MAC Address      Type      age  Secure NTFY   Ports

---------+-----------------+--------+------+------+----+-----------

* 200      BBBB.BBBB.BBBB    dynamic   10      F    F     Po1

 

Guess what? The MAC was found on a port-channel. So, to find the physical interfaces included in that port-channel, I ran:

show port-channel summary

SWITCH-A# sh port-channel sum

Flags:  D - Down        P - Up in port-channel (members)

        I - Individual  H - Hot-standby (LACP only)

        s - Suspended   r - Module-removed

        S - Switched    R - Routed

        U - Up (port-channel)

        M - Not in use. Min-links not met

-------------------------------------------------------------------

Group Port-Channel  Type     Protocol  Member Ports

-------------------------------------------------------------------

1     Po1(SU)       Eth      LACP       Eth1/1(P)    Eth1/2(P)

 

This showed which physical interfaces each port-channel contains. With this, I looked in the CDP neighbor table to see which neighbor these interfaces connect to.

show cdp neighbor

SWITCH-A# sh cdp ne

Capability Codes: R - Router, T - Trans-Bridge, B - Source-Route-Bridge

 S - Switch, H - Host, I - IGMP, r - Repeater,

 V - VoIP-Phone, D - Remotely-Managed-Device,

 s - Supports-STP-Dispute

Device-ID Local Intrfce Hldtme Capability Platform     Port ID

SWITCH-B

          Eth1/1        125    S I s      N5K-C5548    Eth1/1

SWTICH-C

          Eth1/2        128    S I s      N5K-C5548    Eth1/2

Turns out the two physical interfaces connect to two different neighbors. Why? Virtual Port-Channel. This is where things get a little tricky.

 

I needed to figure out which physical interface is actually forwarding the packets, since they lead to different switches. I had no clue which command would accomplish this.  Fortunately, Cisco TAC did know.

 

sh port-channel load-balance forwarding-path int port-channel 1 vlan 101 src-ip 1.1.1.1 dst-ip 2.2.2.2

 

This command is full of options, and if you question-mark your way through it, you can tweak it a variety of different ways. Remember the source and destination IPs? This is where you’ll use them. The output shows which physical interface the packets are taking, as well as which load-balanceing algorithm the port-channel is using. In this case, it was just using source and destination IP only.

 

SWITCH-A# sh port-channel load-balance forwarding int port-channel 1

          vlan 140 src-ip 1.1.1.1 dst-ip 2.2.2.2

Missing params will be substituted by 0's.

Load-balance Algorithm on switch: source-dest-ip

crc8_hash: 11 Outgoing port id: Ethernet1/2

Param(s) used to calculate load-balance:

dst-ip: 2.2.2.2

src-ip: 1.1.1.1

dst-mac: 0000.0000.0000

src-mac: 0000.0000.0000

 

With the physical interface info, I could correlate with the CDP neighbors table, and find which neighbor to check next.

 

I moved to the next switch, repeated the whole process, moved to the third, ran the procedure again, moved on yet again … sigh. Eventually, the MAC address-table entry didn’t point to a CDP neighbor, but instead pointed to a single physical interface with only one MAC address in the MAC address-table.

 

At last. I’d found the full, one-way Layer 2 path.

 

At this point, it would be easy assume that the return path is symmetrical, and call it a day. But in this case, given how much everyone else had already worked on it (with no success), my hunch said the traffic followed an asymmetrical return path. So, once again into the CLI, I repeated everything until I returned to the source. Sure enough, one device on the different return path was not configured for jumbo frames – problem found. One maintenance window later, problem solved.

 

All told, this procedure took about an hour. But with some Layer 2 traceroute tool, it would have taken about 5 minutes. This is a great opportunity for Cisco to expand the Layer 2 traceroute to NX-OS, especially since the Nexus line goes into the core of many large networks. Maybe even some enterprising startup with mad programming skills could develop an app with a Cisco API that would spider through all these tables and display the path. No doubt the big monitoring packages like What’s UP Gold or HP OpenView or Cisco Prime already do it, but how about a scaled-down version for the rest of us?

 

---Original reading from http://packetpushers.net/tracing-a-layer-2-path-on-cisco-nexus-switches/

More Cisco Switch Tips:

Why Does the Nexus Core Switch Rock in the Datacenter?

Microsoft Hyper-V: What It Means for Cisco Nexus 1000v

Layer 2 Switches & Layer 3 switches

Cisco Catalyst 6000/6500, Aim at Enterprise Network & Service Provider Networks

Read more

Cisco: Wireless Networks Need to Catch up with Fixed Line

August 9 2012 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Wireless - Cisco Wireless AP

 

The explosion of smart devices means that enterprises can no longer fall back on Ethernetwireless-network-.jpg

As smart devices continue to proliferate, the nature of the network is changing, and organisations need to focus on making their wireless networks as fast, reliable and scalable as their fixed line networks, according to Cisco.

 

Recent research by the UK communications regulator Ofcom found that tablet ownership in the UK has jumped from two percent to 11 percent during the last 12 months, and every two in five adults now owns a smartphone. Meanwhile, Cisco survey data suggests that the average person will own 3.47 devices in 2015, and 6.58 devices in 2020.

 

With the explosion of smart devices putting massive pressure on wireless networks, businesses cannot afford to offer inadequate services, according to Sarah Eccleston, head of borderless networks for Cisco UK and Ireland.

 

Most enterprises already have “best efforts” wireless networks in place, which have typically been built for the convenience of employees moving around the office, or for guest access. This is fine, said Eccleston, as long as there is a fixed line network to fall back on.

 

“In a traditional world, if your wireless network wasn't performing reliably, you simply plugged in your Ethernet cable. But you can't plug an Ethernet cable into a tablet or smart device because it doesn't have an Ethernet port,” she said.

 

“The wireless network is becoming more and more relevant and can't just be a best efforts technology anymore.”

 

Eccleston said that pressure is being put on organisations to holistically improve their wireless networks so that employees, clients and visitors can get the same level of service on their smart mobile devices that they have become used to on their PCs and laptops using a wired connection.

The biggest challenge is making wireless networks as fast as fixed networks, she said. This is partly because the the number of mobile devices connected to a wireless network is constantly changing, whereas the number of connections on a fixed line network is restricted by the number of Ethernet ports.

 

The speed of connection over wireless networks can also be affected by the wireless client on the smartphone or tablet, which is often not as powerful as on a laptop, so the network has to compensate for devices connecting slowly.

 

Meanwhile, making wireless networks more reliable means removing radio frequency (RF) interference from electrical devices such as microwaves, video cameras and motion detectors; making them more scalable means building wireless LAN controllers that can support as many devices as a typical wired enterprise LAN.

 

Cisco has brought out several products to tackle these issues, such as the Aironet 3600 access point and its CleanAir technology, but Eccleston said there is still some way to go before the wireless network is good enough to replace fixed line. However, one important step towards the two becoming interchangeable is offering unified access.

 

“It's not really about having a LAN or having a wireless network any more, it's about providing access, and that access has to be just as good and just as secure, whether it's wired or wireless because of the plethora of mobile smart devices,” said Eccleston.

 

She said that IT departments used to have complete control of both the devices that employees were using, and of the applications running on those devices. Having lost control of both of those environments, as a result of the BYOD and cloud computing revolutions, they must now rely on the network for control.

 

“Unified access is about being able to know who's on your network, control what people can do when they're on that wireless network, and it's about being able to set that policy once. So regardless of the means of access of that person, that policy is set and enforced by the network.”

This means that whether an employee is accessing the corporate network using a laptop in the office with a wired Ethernet connection or using Wi-Fi in Starbucks via a VPN, the IT department has an equal amount of control and can feel confident that the enterprise's sensitive data is secured.

 

“It's a little bit about giving them visibility, and a little bit about giving them management, but it's also about giving IT back some control of their environment,” said Eccleston.

 

Providing fast, reliable and scalable access that enables people to use their own devices wherever they are, securely and effectively, is no longer just a “nice to have”. It has become central to the smooth running of any business, and not only employees but also customers and partners will expect to be able to connect seamlessly.

 

“If organisations don't improve their wireless capability then they can't really truly enable these devices for productivity, and that has all kinds of implications in terms of employee satisfaction, and the ability to recruit and retain younger talent,” concluded Eccleston.

 

---Written by Sophie Curtis from Techworld.com

More Cisco Reviews and Cisco News

Wireless Network: How to Configure Wireless Security?

Simple Ways to Secure Wireless Network

 

Read more

Cisco to Break the 1-Gigabit Barrier on Enterprise WiFi Networks

July 12 2012 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Wireless - Cisco Wireless AP

The networking giant will introduce a 1G-bit access point in 2013 to accommodate the need for faster wireless enterprise networks, but competitors are expected to be close behind.wireless-network.jpg

Cisco Systems says it will be the first networking vendor to deliver 1-gigabit-per-second speeds on enterprise wireless networks when it introduces an 802.11ac-based access point next year, but a few other things have to also happen before that actually means something.

 

The 802.11ac WiFi standard, currently under development by the Institute of Electrical and Electronics Engineers (IEEE) standards body, would be the successor to the predominant 802.11n standard today. Cisco officials said 802.11ac is needed to handle the growing number of devices seeking wireless access to corporate networks as the smartphones and tablet computers people are bringing to work lack an Ethernet jack to plug into the wired network. 

 

They said Cisco will introduce an 802.11ac module in the first half of 2013 that can be plugged into an existing Cisco Aironet 3600 access point that runs on the 802.11n standard now, said Sujai Hajela, vice president and general manager of the wireless networking business unit at Cisco.

 

“It allows [customers] to upgrade and not have to go through the guesswork of, ‘Should we upgrade to 802.11n or go with 802.11ac?’ You can invest in 11n now and upgrade to 11ac with a new radio,” Hajela said, referring to the module. “It’s a way of future-proofing your network.”

Wired networks already operate at 1G-bps speeds and are quickly accelerating to 10G, 40G and even 100G speeds, but Hajela said Cisco would be the first to break the 1G-bps barrier on a wireless local area network (WLAN).

 

However, a few other things have to happen before end users can actually experience 1G-bps speeds on their wireless networks, said Mike Spanbauer, principal analyst at Current Analysis, a research firm.

 

First, the 1G-bps speeds Cisco is touting are dependent upon a number of variables, including radio frequency (RF) interference, the kind of antenna used, the strength of the endpoint radio and other factors. Second, 11ac-capable access points won’t mean much unless 11ac-enabled devices are there to connect to them. The smartphones, tablets and laptops currently shipping are still based on the 802.11n standard, although Spanbauer expects the endpoint devices will be on the market by the time the access points are.

 

And although Cisco may claim bragging rights as the first networking vendor to publicly declare a coming 1G-bps WLAN access point, Cisco’s competitors—particularly Aruba Networks and Hewlett-Packard—may not be far behind, he said. All three vendors were placed in the “Leaders” quadrant in a June Magic Quadrant report from research firm Gartner profiling the top vendors in both the wired and wireless networking equipment markets.

 

“I think that every one of those vendors is very aggressively working on 11ac themselves,” said Spanbauer.

 

“[HP] is working on our 802.11ac portfolio of access points,” said Kevin Secino, a marketing manager within HP Networking, but emphasized that “our business objective is to be standards-compliant.” Furthermore, he noted that the 802.11ac standard is still in development and may not be finalized until sometime in 2013 anyway.

 

HP’s experience in wireless access points dates back to its acquisition of a company called Colubris in 2008, whose technology went into HP’s ProCurve line of wireless devices. It entered into a joint venture with 3Com to sell a line of wireless devices called the H3C line, which was followed by HP’s acquisition of 3Com in 2010.

 

While noting that competitors are expected to introduce 1G-bps access points in competition with Cisco, Current Analysis’ Spanbauer lauded Cisco for enabling its existing Aeronet 3600 WLAN access point devices already shipping and installed to be easily upgraded to 802.11ac when the time comes.

 

“It’s important to know that your wireless LAN vendor is going to be supporting and moving forward with the next specification,” he said.

 

HP’s Secino, meanwhile, said the company “has been very good in ensuring that customers’ investments are protected.”

---Original News Reading from eWeek

 

More Cisco News:

Cisco: Enterprise 802.11ac Sooner, Not Later

Cisco Debuts Linksys Smart Wi-Fi Routers-EA6500, the Linksys Universal Media Connector

Cisco's Wireless Unit Shifts Emphasis to "Mobility"


Read more

How to Route Multiple VLANS through a Cisco Aironet 1300?

July 5 2012 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Wireless - Cisco Wireless AP

Enable VLAN or Virtual Local Area Network forwarding through a Cisco Aironet 1300 by connecting to the Aironet Web administration interface. The Cisco Aironet 1300 can bridge network segments and forward VLANs between network segments once the Aironet native VLAN matches that of the switch connected to the Aironet. Configure the Cisco Aironet Native VLAN and VLANs you want to forward using a Web browser.

What You'll Needcisco-1310-ap.jpg

Cisco Aironet 1300 configured as a bridge

Cisco Aironet 1300 IP address

Administrator username and password

IDs of VLANs

Native VLAN ID of connected switch

 

How to Route Multiple VLANS through a Cisco Aironet 1300

1. Launch a Web browser, type the Cisco Aironet 1300 IP address into the browser address bar and press “Enter.”

2. Type the Cisco Aironet administrator username and password when prompted and press “Enter.”

3. Click “Services,” “VLAN,” then “New” in the “Current VLAN List” box. 

4. Type the Native VLAN ID of the switch connected to the Cisco Aironet 1300 into the “VLAN ID” box. Click to select the “Native VLAN” check box and click “Apply.”

5. Click “New” in the “Current VLAN List” box. Type the ID of a VLAN you want to route through the Cisco Aironet 1300 into the “VLAN ID” box and click “Apply.” Repeat this step for each VLAN you want to route through the Cisco Aironet 1300.

6. Click“Security” in the left pane, then “SSID Manager.” Click “New” in the “Current SSID List” box.

7. Type the SSID or Service Set Identifier for the Cisco Aironet 1300 into the “SSID” box. Click the “VLAN” box, then the Native VLAN number configured earlier. Click the “Apply” button.

8. Click the “Set Infrastructure SSID” drop-down box in the “Global Radio0-802.11G SSID Properties” section. Click the SSID assigned in the previous step and click “Apply.”

 

More Cisco Aironet 1300 Series Info

Cisco Aironet 1300 Series Outdoor Access Point Bridge Overview

Read more

Wireless Access Point

June 28 2012 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Wireless - Cisco Wireless AP

Wireless Access Point (WAP) is essentially hardware equipment that enables wireless devices to connect to wireless networks, via standards such as Wi-Fi, Bluetooth and so on. The WAP device typically connects to a wired network, and acts as a communication interface between the wireless devices and wired devices on the network.

 

The WAP device enables the transmission of data between wireless and wired devices. For example, in an office setup multiple users can print documents from their workstations or laptops that are physically connected to the network, with the help of a wireless printer that is located at a central location in the office. The WAP device acts as a central hub for sending and receiving data via WLAN (Wireless Local Area Networks).Wireless-Access-Point-info.jpg

 

The usage of WLAN and WAP has become quite common in offices, homes and educational institutions. Before the advent of wireless networking, setting up a computer network for home, corporate or institutional use was quite tedious and time-consuming, as it involved the installation of numerous cables to ensure network access for all the network devices being deployed. Presently WAP devices are designed to work with standards to send and receive data via radio frequencies. This keeps the usage of cabling to a bare minimum. The standards and frequencies are prescribed by IEEE (Institute of Electric and Electronic Engineers), and nearly all WAP devices use IEEE 802.11 standards.

 

WAP applications

WAP devices are widely used for the following environments:

  • Corporate

Corporate organizations use a number of WAP devices and attach them to a traditional wired network, in order to give wireless access to the office LAN. Within the office setup, users have the advantage of network access coupled with mobility.

  • Hot spot

Hot spots are used for public access to the internet. Wireless devices can access the Internet by directly connecting to the network present at these hot spots. Hot spots can be found in hotels, airports, coffee houses, malls, and so on.

  • Home wireless networks

Home wireless networks use wireless routers in conjunction with broadband modems to provide wireless access within a home environment.

 

WAP modes

The wireless network access modes are as follows:

  • Infrastructure mode

The infrastructure mode is the most commonly used mode for wireless Internet access. It uses WAP devices to enable wireless devices to communicate with the wired network. A single WAP device attached to a wired network and a group of wireless devices is known as a Basic Service Set (BSS).

  • Ad-hoc mode

In a wireless ad-hoc network, devices communicate with each other directly, without the aid of a WAP device. It is also known as peer to peer mode or Independent Basic Service Set (IBSS).

 

More Related Tips:

Wireless Bridge Vs. Access Point

Simple Ways to Secure Wireless Network

List of Featured Cisco Access Points for Enterprises

Read more

Cisco: Enterprise 802.11ac Sooner, Not Later

June 20 2012 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Wireless - Cisco Wireless AP

 

The Wi-Fi giant surprises with an 802.11ac add-on to their popular high-end 3600 AP. Too soon? Perhaps not.

 

Cisco recently briefed me on an interesting product direction they discussed at their latest Cisco Live event, an add-on 802.11ac module for their popular 3600 series of Cisco APs. In addition to being one of the few four-antenna .11n products on the market, the 3600 has a modular architecture that enables the bolting on of additional functionality. Cisco previously announced a security monitor module for off-channel ClearnAir scanning, and the .11ac module will support 3x3:3 1.3 Gbps capability. Both modules are scheduled for availability in 1Q13, a little ahead of my prediction with respect to 802.11ac in the enterprise.802-11ac-wi-fi.jpeg

 

There is little doubt that the as-yet-unfinished 802.11ac standard will eventually supersede 802.11n. This will take many years - at a recent symposium I Chaired for the Boston Section of the IEEE Communications Society, the panel of analysts assembled pretty much settled on 2015 as the timeframe for critical mass for 802.11n in the enterprise - with one thinking it could in fact be much later than that. I'm expecting reasonable numbers of  enterprise-class .11ac products to appear in the second half of next year. As I noted above, I didn't expect an announcement to that effect so soon, and especially from industry leader Cisco. Aggressive? Certainly. But the evolution to .11ac is inevitable, and implementing the functionality in an add-on module eliminates the cannibalization risk that would otherwise be present. Indeed, such might actually spur sales of the 3600 as the technological risk is minimized.

 

The only risk, in fact, might be with respect to cost, as pricing for the module has not been announced. Nonetheless, the benefits of a modular implementations are once again reinforced, even if the assumed success of .11ac remains well off in the future.

Reading from http://www.networkworld.com/community/node/80833

More Cisco News:

Cisco’ Answer to SDN, Cisco ONE Introduced at Cisco Live

Cisco Unveils Mobile Visual Collaboration Tech in a Post-PC Era

 

Read more

How to Troubleshoot Cisco System's Wireless LAN Module

June 18 2012 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Wireless - Cisco Wireless AP

The Cisco Wireless Services Module (WiSM) is part of the Cisco Wireless LAN Controller family. WiSM works with other Cisco appliances to deliver a wireless solution, which supports voice, wireless data and video applications. The Cisco WiSM integrates into the Cisco Catalyst 6500 Series Switch, a Cisco Catalyst 6500 Supervisor Engine 720 and a Cisco 7600 router. Troubleshooting the WiSM is required when the signals are not getting through to the router. The troubleshooting begins with the WiSM connection.

 How-to-Troubleshoot-Cisco-System-s-Wireless-LAN-Module.jpg

Things You Need as follows:

 

Steps to Troubleshoot Cisco System's Wireless LAN Module

1. Type "enable" to enter the privileged mode of the router or switch. The privilege mode will look like this "Router#"; it is the editor mode in which you enter router commands. This privileged editor mode is automatic. All of the troubleshooting commands will occur in privileged mode. For all of these commands, if there is a period at the end, ignore it.

 

2. Type the command "show version." It is the starting point of any troubleshooting. This displays information relating to the current configuration. One feature displayed is the IOS version running. The WiSM requires a Supervisor 720 on an IOS version 12.2(18). If it does not have 720, or the correct IOS version, there will be problems with the module.

 

3. Type"show module." Use this command to verify that the Cat6k has a WiSM card and the Supervisor 720 engine. It will also show the number of ports on the card.

 

4. Type "show wism status" to verify the location of the WiSM module. This information may be useful in locating other configurations on the module.

 

5. Type "show wism module 4 controller 2 status." This will verify the WiSM status. You will be looking for an "oper-up" information piece to verify the controller's operational status. The module 4 portion identifies the location of the slot in controller 2; it might be different.

 

6. Type "show interface trunk." This will verify that WiSM and VLANs have trunking defined. If you suspect that a problem is occurring with the VLAN, this would be your starting troubleshooting point.

 

7. Type"Show etherchannel load balance." This command will verify the correct load balance algorithm. The algorithm should be src-dst-ip. If this algorithm is not present, use the "port-channel load-balance src-dst-ip" command in config mode to reset it.

 

8. Type "show interface summary" to check the status of the configuration from the WiSM side. Here a summary view of the interface appears. You will see interface name, the port vlan id, the IP address, the type and the application manager.


More Notes: Troubleshoot and Configure Initial Wireless Services Module (WiSM) Setup

More Cisco Hardware Tips and Tutorials

Read more

How to Configure Cisco Wireless?

April 25 2012 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Wireless - Cisco Wireless AP

Cisco, the major networking, makes a line of wireless routers that come under the Linksys name. Linksys wireless devices and those made under the Cisco name are set up in the same manner. It is always best to look at the instructions that came with your router if you have them for specifics when it comes to setting up security passwords and using the advanced user options, but standard configuration is quite simple

Cisco-wireless-copy-1.jpg


What you need preparing: Internet service, Ethernet cable, Computer

 

Instructions to Configure Cisco Wireless

1. Connect your Internet service line from your Internet source to the port marked Ethernet on the back of your Cisco router. Check the LED on the front of the device to see if the router reads the cable.

2. Look for the IP address that is printed on the back label of your router, or in the instruction booklet. 

3. Type the IP address into an Internet browser (Firefox, Safari, Internet Explorer) and press the return key. A setup page for your router will appear. 

4. Go to the "Setup" tab and select the general setup page. Find the local IP address section and insert the IP address 92.168.2.1. Press the "Renew IP address" button to save.

5. Type 92.168.2.1 into your browser and press return. The setup will again appear.

6. Press the "Status" tab and check the IP address value. Click "DHCP release," then click "DHCP renew" if the IP address is a series of zeroes. 

7. Click the "Wireless" section and go to the security setup. Type in an appropriate user name and password for yourself and save the changes. You will now be able to access your router wirelessly.


Cisco Wireless News:

Cisco’s New Aironet Wireless Access Points Make Networks Faster and Steadier

Read more
<< < 1 2 3 4 > >>