Overblog Follow this blog
Administration Create my blog
Cisco & Cisco Network Hardware News and Technology

Posts with #cisco switches - cisco firewall tag

IPv6 Feature Support on the Cisco ASA Firewall

November 12 2015 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Technology - IT News, #Cisco Switches - Cisco Firewall

It is well known that Cisco ASA series supports IPv6 and it can be setup very easily and quickly. In the following part it focuses on a basic ASA setup for a native IPv6 network. As you will see, there are very few commands required to have your ASA firewall join an IPv6 ready network.

Here is a quick way to configure up your ASA firewall for IPv6 connectivity.

BASIC CONFIGURATION

Step 1

In this step we assign a link local address to the interface. There are 2 ways to assign a link local address to the interface

Step 1.1.

Configure the interface to generate a link local address from its MAC address.

interface GigabitEthernet 0/0

no shutdown

nameif inside

ipv6 enable

When you enter IPv6 enable, a link local address is automatically generated (this is based on your mac address).

Step 1.2.

Configure a link local address manually.

interface GigabitEthernet 0/0

no shutdown

nameif inside

ipv6 address <ipv6-address> link-local

Using the above command you can assign a link local address to the interface manually.

You can verify the link local address by executing the “show ipv6 interface” command.

Step 2

Next we have to assign the global address to the interface. There are 2 ways of doing this.

Step 2.1.

You can manually assign a global IPv6 address to the interface.

interface GigabitEthernet 0/0

ipv6 address 2001::db8:2:3::1/64

With the IPv6 address command above, you are manually specifying the global IPv6 address for the interface. You can specify more than one IPv6 addresses for the interface using the command.

Step 2.2.

You can configure the interface to obtain the address automatically using stateless address autoconfiguration.

interface GigabitEthernet 0/0

ipv6 address autoconfig

Enabling stateless autoconfiguration on the interface configures IPv6 addresses based on prefixes received in Router Advertisement messages.

NOTE: There was a defect (CSCuq62164) in the ASA software that caused the ASA to not assign an address if it received a RA message with both the M and A flags set. This has been fixed in 9.3(1) release and hence we recommend this version if you intend to use SLAAC for configuring the address on ASA interfaces.

Step 3

Verify IPv6 configuration.

Example:

show ipv6 interface


inside is up, line protocol is up

IPv6 is enabled, link-local address is fe80::e6c7:22ff:fe84:eb2

Global unicast address(es):

2001:db8:2:3::1, subnet is 2001:db8:2:3::/64

Joined group address(es):

ff02::1:ff00:1

ff02::1:ff84:eb2

ff02::2

ff02::1

ICMP error messages limited to one every 100 milliseconds

ICMP redirects are enabled

ND DAD is enabled, number of DAD attempts: 1

ND reachable time is 30000 milliseconds

ND advertised reachable time is 0 milliseconds

ND advertised retransmit interval is 1000 milliseconds

ND router advertisements are sent every 200 seconds

ND router advertisements live for 1800 seconds

Hosts use stateless autoconfig for addresses.

Step 4 (Optional)

Suppress Router Advertisement messages on an interface.

By default, Router Advertisement messages are automatically sent in response to router solicitation messages. You may want to disable these messages on any interface for which you do not want the security appliance to supply the IPv6 prefix (for example, the outside interface).

Enter the following command to suppress Router Advertisement messages on an interface:

ipv6 nd suppress-ra

Neighbor discovery will continue to be operational even though RA suppression has been configured.

Step 5

Define an IPv6 default route.

ipv6 route outside ::/0 next_hop_ipv6_addr

Using ::/0 is equivalent to “any”. The IPv6 route command is functionally similar to the IPv4 route.

Step 6

Define access-lists.

Using the regular access-list command define the access-lists with IPv6 addresses in them so as to permit the required traffic to flow through the ASA.

Example:

access-list test permit tcp any host 2001:db8::203:a0ff:fed6:162d

access-group test in interface outside

The above is permitting traffic to a specific server 2001:db8::203:a0ff:fed6:162d.

SECURING THE FIREWALL

If you plan to configure autoconfig for the IPv6 global address on the ASA, you should limit the amount of router advertisements (RA) to known routers in your network. This will help prevent the ASA from being auto configured from unknown routers.

access-list outsideACL permit icmp6 host fe80::21e:7bff:fe10:10c any router-advertisement

access-list outsideACL deny icmp6 any any router-advertisement

access-group outsideACL in interface outside

interface GigabitEthernet 0/0

nameif outside

security-level 0

ipv6 address autoconfig

ipv6 enable

The above access-list when applied on the ASA will limit receiving router advertisements (RA) from only the router specified. All other RAs will be denied.

Configuring ASA to help autoconfigure IPv6 addresses on hosts behind the ASA

The hosts in the network behind the ASA might be configured to autoconfigure their IPv6 address. Dynamic address assignment happens in 2 ways on IPv6 networks. It could either be a stateful address assignment or stateless address assignment.

Stateful dynamic address assignment

For stateful address assignment, a DHCPv6 server needs to be configured on the network that can assign address to hosts upon request. ASA currently does not have the ability to host a DHCPv6 server on its interfaces. But the ASA can act as a DHCPv6 relay agent. In order to enable stateful dynamic address assignment to hosts behind the ASA, the DHCPv6 relay agent needs to be configured on the ASA.

To configure the DHCPv6 relay agent the following configuration is needed:

ipv6 dhcprelay server 2001:db8:c18:6:a8bb:ccff:fe03:2701

ipv6 dhcprelay enable inside

The first command specifies the address of a DHCPv6 server to which the DHCP requests are forwarded. The command also accepts an optional interface name that specifies the output interface for the destination. The second command enables DHCP relay on an interface. When DHCP relay is enabled on an interface, all the DHCP requests coming on that interface get forwarded to the configured DHCP server.

Stateless dynamic address assignment

In Stateless Autoconfiguration (SLAAC) the client picks up its own address based on the prefix being advertised by the ASA. The prefix is advertised by means of an IPv6 router advertisement. ASA sends out IPv6 router advertisements by default from any interface on which a global IPv6 address is configured. Additionally, a DHCPv6 relay agent can be configured to point to a DHCPv6 server that can advertise a DNS server address and a domain name only.

IPv6 Prefix delegation

ASA does not support IPv6 prefix delegation yet. If the network behind the ASA requires to be assigned IPv6 addresses based on the prefix delegated by a delegation router, then we need to place an ASA between the provider edge (PE) router and the IPv6 capable customer premise router. The ASA must be in transparent mode. This way the ASA protects the entire IPv6 network, including the infrastructure router, on the customer premises. All ICMP6 traffic must be permitted on the ASA running in transparent mode.

The following must be configured on the ASA:

firewall transparent

interface BVI1

no ip address

ipv6 enable


interface GigabitEthernet0/0

nameif outside

bridge-group 1

security-level 0


interface GigabitEthernet0/1

nameif inside

bridge-group 1

security-level 100


access-list permit_icmp6 extended permit icmp6 any6 any6

access-group permit_icmp6 global

This example uses a link-local IPv6 address on the BVI interface. You can also configure an explicit IPv6 address for in-band management purposes.

The original article was shared from https://supportforums.cisco.com/document/61451/cisco-asa-ipv6-quick-start

More Cisco Firewall & Network Security Topics you can read here...http://blog.router-switch.com/category/reviews/cisco-firewalls-security/

Read more

How to Stack Cisco 3750E and 3750X Switches?

August 7 2015 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Switches - Cisco Firewall

The issue: “There are two Cisco 3750 switches: WS-C3750E-48PD-SF and WS-C3750X-48PF-L. Both have universal IOS. So can we make the stacking of these two Cisco switches?”

How to STACK the Cisco 3750E and 3750X one? Firstly, we should know the license the two 3750s have. Well, the switch 3750E has IP Base license and the 3750X has LAN Base license. In fact, the 3750E and the 3750x-LAN base are not compatible to stack.

Cisco 3750x LanBase can only stack with other LanBase. 3750x IPBase can stack with any other 3750 (with the exeption of 3750x lanbase and some older 3750 with 16 Mb of memory)

So we need to have a license upgrade the 3750x from lanbase to ipbase and then they are able to stack with each other.

It is a license thing: http://www.cisco.com/en/US/prod/collateral/switches/ps5718/ps6406/data_sheet_c78-584733.html "The Cisco Catalyst 3750-X Series Switches with LAN Base feature set can only stack with other Cisco Catalyst 3750-X Series LAN Base switches. A mixed stack of LAN Base switch with IP Base or IP Services features set is not supported."

A Cisco 3750 switch can be stacked with any other model of Cisco 3750 switches but 3750X to

Participate IP services feature set enabled otherwise Basic routing functions, including static routing and the Routing Information Protocol (RIP) will be in use.

http://www.cisco.com/en/US/products/hw/switches/ps5023/products_configuration_example09186a00807811ad.shtml

In stacking 3750, 3750G or 3750X IOS should be identical.

https://www.cisco.com/en/US/prod/collateral/switches/ps5718/ps5023/prod_white_paper09186a00801b096a.html

This discussion you can read here…

https://supportforums.cisco.com/discussion/11623571/stacking-switch-3750e-and-3750x

More Related Topics

How to Upgrade the License from IP Base to IP Services on 3750-X Stack?

Cisco Switch Stacking Using a Couple of Cisco Catalyst 3650

Cisco 3750 Stacking Configuration

Read more

An Example to Upgrade IOS on Cisco 4500X Switch

July 22 2015 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Switches - Cisco Firewall

Kingston 32Gb USB Flash with Metal Casing-Using a Kingston USB stick to upgrade the IOS on a Cisco 4500X Switch

Kingston 32Gb USB Flash with Metal Casing-Using a Kingston USB stick to upgrade the IOS on a Cisco 4500X Switch

How to upgrade the IOS/Software on a Cisco 4500X switch? A Consultant named Roger Perkin (Who is for a Cisco Gold Partner in the UK) shared his experience of Upgrading IOS on Cisco 4500X Switch. What’s it? Let’s have a look.

Roger Perkin said that it will not be covering how to do a hitless upgrade using ISSU with 2 switches in a VSS pair. This process is performed on two switches which are not in production. So to perform the upgrade he has disconnected the VSS link and will upgrade each switch in turn and will then connect the VSS link again.

First copy your image file into the bootflash: of the switch, this can be done via TFTP or USB.

USB is the much easier solution, for this to work you need a compatible USB stick, I have always used a Kingston brand and have never had any problems.(This is the exact USB stick he used for upgrading IOS on Cisco Switches)

Insert the USB stick into the slot on the front of the Cisco 4500X switch as shown above.

From the CLI issue the command dir usbb0: If you get (No such device) your USB is not supported

4500X-SW-01#dir usb0:

%Error opening usb0:/ (No such device)

If your USB is supported this is the output you will see

4500X-SW-01#dir usb0:

Directory of usb0:/

176 -rwx 173555452 Mar 23 2015 18:59:44 +00:00 cat4500e-universalk9.SPA.03.05.03.E

You now need to copy this image from the USB to the bootflash: using the following command

copy usb0:cat4500e-universalk9.SPA.03.05.03.E.152-1.E3.bin bootflash:

This will copy the image onto the bootflash of the switch.

You now need to tell the switch to boot this image.

There are 2 options to do this – Option 1 Rename old IOS

By default the config-register of the switches will be set to 0x2101 when the appliance is shipped out.

The last octet of “1” basically tells the appliance to IGNORE the boot variable string and boot the first valid IOS
(from top to bottom) found in the bootflash.

So you can either delete the old image or rename it. I prefer to rename it.

rename bootflash:OLD_IOS_filename.bin bootflash:OLD_IOS_filename.bin

If you now reload the switch it will boot the newer image.

Option 2 – change boot variable and config-register

The second option is to create a new boot variable

In global config enter the command.

boot system flash bootflash:cat4500e-universalk9.SPA.03.05.03.E.152-1.E3.bin (or your new image name)

Just this will not do anything as with the config register set to 0X2101 it will ignore the boot variable set.

If you change the config-register to 0X2102 the switch will then reference the boot variable.

In global config

config-register 0x2102

Save the config and reload the switch.

You may need to delete any other boot variable settings

Check this with sh ver | inc boot

If there is a second one referencing the old image delete it.

Repeat this operation on the second switch and when both have booted using the new image connect up the VSS link.

Reference from http://www.rogerperkin.co.uk/ccie/switching/4500x/how-to-upgrade-ios-on-cisco-4500x-switch/

More Topics Related to Cisco 4500 Series

What’s New on Cisco Catalyst 4500 VSS?

VSS on Cisco 4500/4500X Switches

Cisco VSS Configuration: Cisco Catalyst 6500 Virtual Switching System

A Sample VSS Configuration for 2x Cisco Cat6500 with Supervisor 720

Cisco 4500 VSS Requirement-Software, Hardware and Licensing

Cisco Catalyst Switches for the Different Types of Campuses

Read more

What’s The New of Cisco Catalyst 4507R+E and 4510R+E Chassis?

July 17 2015 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Switches - Cisco Firewall

WS-C4507R-E and WS-C4510R-E-Redundant Sups

WS-C4507R-E and WS-C4510R-E-Redundant Sups

Two new redundant chassis, the Catalyst 4507R+E and 4510R+E had been introduced to Cisco Catalyst 4500E family. What’s the new of them? WS-C4507R+E, as the name, is a new 7-slot redundant chassis. And WS-C4510R+E, is a 10-slot redundant chassis. WS-C4507R+E continues to support five line card slots and two supervisor slots, like the WS-C4507R-E chassis. Similarly, the WS-C4510R+E chassis continues to support eight line card slots and two supervisor slots, like the WS-C4510R-E chassis.

Compared to the previous WS-C4507R-E and WS-C4510R-E (they are End-of-Sale & End-of-Life), the new WS-C4507R+E and WS-C4510R+E chassis support 48 Gbps bandwidth per line card slot. Also, WS-C4503-E and WS-C4506-E are already capable of supporting 48 Gbps bandwidth per line card slot.

The Cisco Catalyst 4507R+E and 4510R+E chassis offer the following benefits:

Bandwidth capacity: The new chassis are capable of providing up to 848 Gbps switching capacity at 48 Gb per slot. This provides investment protection and the capability to meet future high-bandwidth requirements in the network.

Redundant power supplies: The Cisco Catalyst 4507R+E and 4510R+E chassis have two bays for the power supplies to help maximize system uptime.

Redundant supervisor engines: To facilitate nonstop operations, the new chassis have two dedicated slots for supervisor engines.

AC and DC power options: The new chassis support both AC and DC power supply options. For AC power, 1300 watts (W), 1400W, 2800W, 4200W, and 6000W power supplies are available. For DC power, 1400W DC power supplies are available.

Standards compliance: The Cisco Catalyst 407R+E and 4510R+E comply with Network Equipment Building Standards (NEBS).

WS-C4507R+E and WS-C4510R+E, both support Supervisor Engine 8-E, Supervisor Engine 7L-E and Supervisor Engine 7-E.

Note: Refer to your software release notes for the minimum software release versions required to support the supervisor engines.

  • Supervisor engines must be installed in slot 3 or in slot 4.
  • Supervisor engine redundancy is supported in this chassis.

Note: The Catalyst 4507R+E and 4510R+E switch supports 1+1 supervisor-engine redundancy. With the support of stateful switchover (SSO), the secondary supervisor engine serves as a backup to immediately take over after a primary supervisor failure. During the switchover, Layer 2 links are maintained transparently without the need to renegotiate sessions.

The Catalyst 4507R+E and 4510R+E switch support one or two power supplies. The following power supplies are supported:

–1000 W AC-input power supply (PWR-C45-1000AC)

–1400 W AC-input power supply (PWR-C45-1400AC)

–1300 W AC-input power supply (PWR-C45-1300ACV)

–2800 W AC-input power supply (PWR-C45-2800ACV)

–4200 W AC-input power supply (PWR-C45-4200ACV)

–6000 W AC-input power supply (PWR-C45-6000ACV)

–9000 W AC-input power supply (PWR-C45-9000ACV)

–1400 W DC-input power supply, triple-input (PWR-C45-1400DC)

–1400 W DC-input power supply with integrated PEM (PWR-C45-1400DC-P)

–External AC power shelf (WS-P4502-1PSU)

  • All Catalyst 4500 series AC-input power supplies require single-phase source AC.
  • Source AC can be out of phase between multiple power supplies or multiple AC-power plugs on the same power supply because all AC power supply inputs are isolated.
  • Single power supplies are installed in the left power supply bay. The second power supply is installed in the right power supply bay.

Note: For proper operation of the power supply OUTPUT FAIL LED, systems with single power supplies must be configured with a minimum of one fan tray and one supervisor engine. Systems with dual power supplies must have a minimum configuration of one fan tray, one supervisor engine, and one additional module. Failure to meet these minimum configuration requirements can cause a false power supply output fail signal.

…More info: Some simple questions about the New Cisco Catalyst 4500 E-Series Redundant Chassis you can read here

http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-4500-series-switches/qa_c67_610073.html

More Related Cisco 4500E Topics

Supervisor Engine 6-E vs. Supervisor Engine 7-E vs. Supervisor Engine 8-E

Cisco Catalyst 4500E Supervisor Engine 8-E Review

Power Supplies for the Cisco Catalyst 4500-E Series

Read more

Cisco ASA 5525X to Version 9.4.1. How?

June 29 2015 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Switches - Cisco Firewall

Failover problem on Cisco ASA 5525x after upgrade to version 9.4.1

A user of Cisco ASA 5525x shared his experience of Failover problem on Cisco ASA 5525x after upgrade to version 9.4.1. What’s his problem and how to solve the problem? Let’s have a look.

The man faced with problem after he has done upgrade from 8.6.1 to 9.4.1 on Cisco ASA 5525x with IPS software in Active/Standby configuration.

One of his customers asked him to upgrade to verion 9.4.1 his Active/Standby Cisco ASAs. The man read release notes for this version and started with upgrade. As mentioned in release notes he did upgrade to version 9.0.4 first. Upgrade finished without any problems! All interface were in monitoring state, failover was in perfect state, no errors no issues, everything was as should be. Then started with upgrade to required version 9.4.1. He did everything as before, download image and ASDM, changed boot config, and did failover reload-standby.

After standby unit rebooted he expected standby ready state. But state of standby unit was-Other host: Secondary-Failed

ASA-Firewall# show failover
Failover On
Failover unit Primary
Failover LAN Interface: failoverlink GigabitEthernet0/2 (up)
Unit Poll frequency 1 seconds, holdtime 15 seconds
Interface Poll frequency 5 seconds, holdtime 25 seconds
Interface Policy 1
Monitored Interfaces 3 of 216 maximum
failover replication http
Version: Ours 9.0(4), Mate 9.4(1)
Last Failover at: 14:42:17 AZDT Jun 5 2015
This host: Primary - Active
Active time: 3542 (sec)
slot 0: ASA5525 hw/sw rev (1.0/9.0(4)) status (Up Sys)
Interface inside (10.34.10.254): Normal (Waiting)
Interface outside (xx.132.xx.xxx): Normal (Waiting)
Interface management (10.34.7.252): Normal (Waiting)
slot 1: IPS5525 hw/sw rev (N/A/7.1(9)E4) status (Up/Up)
IPS, 7.1(9)E4, Up
Other host: Secondary - Failed
Active time: 0 (sec)
slot 0: ASA5525 hw/sw rev (1.0/9.4(1)) status (Up Sys)
Interface inside (10.34.10.253): Unknown (Waiting)
Interface outside (xx.132.xx.xxx): Unknown (Waiting)
Interface management (10.34.7.251): Unknown (Waiting)
slot 1: UNKNOWN hw/sw rev (N/A
/) status (Unresponsive)

He did investigtion, checked everything (e.g. interface, config, show commands and so on). He was confused how it can be, he did upgrade till version 9.0.4 for 5 minutes but on version 9.4.1 I stuck. After more deep investigation he thought he found the reason of this problem. He connected to active and standby unit and execute comand:

On Standby ASA-Firewall# show module

Mod Card Type Model Serial No.
---- -------------------------------------------- ------------------ -----------
0 ASA 5525-X with SW, 8 GE Data, 1 GE Mgmt, AC ASA5525 FCH18037CSR
ips ASA 5525-X IPS Security Services Processor ASA5525-IPS FCH18037CSR
cxsc Unknown N/A FCH18037CSR
sfr Unknown N/A FCH180
37CSR

Mod MAC Address Range Hw Version Fw Version Sw Version
---- --------------------------------- ------------ ------------ ---------------
0 18e7.282e.8bbd to 18e7.282e.8bc6 1.0 2.1(9)8 9.4(1)
ips 18e7.282e.8bbb to 18e7.282e.8bbb N/A N/A 7.1(9)E4
cxsc 18e7.282e.8bbb to 18e7.282e.8bbb N/A N/A
sfr 18e7.282e.8bbb to 18e7.282e.8bbb N/
A N/A

Mod SSM Application Name Status SSM Application Version
---- ------------------------------ ---------------- --------------------------
ips IPS Up 7.1(9)E4
sfr Unknown No Image Present Not Applica
ble

Mod Status Data Plane Status Compatibility
---- ------------------ --------------------- -------------
0 Up Sys Not Applicable
ips Up Up
cxsc Unresponsive Not Applicable Not powered on completely
sfr Unresponsive Not Appli
cable

Mod License Name License Status Time Remaining
---- -------------- --------------- ---------------
ips IPS Module Enabled perpetu
al

AND THE SAME ON ACTIVE

On Active ASA-Firewall# show module

Mod Card Type Model Serial No.
--- -------------------------------------------- ------------------ -----------
0 ASA 5525-X with SW, 8 GE Data, 1 GE Mgmt, AC ASA5525 FCH17517QRK
ips ASA 5525-X IPS Security Services Processor ASA5525-IPS FCH17517
QRK

Mod MAC Address Range Hw Version Fw Version Sw Version
--- --------------------------------- ------------ ------------ ---------------
0 3c08.f6d9.9278 to 3c08.f6d9.9281 1.0 2.1(9)8 9.0(4)
ips 3c08.f6d9.9276 to 3c08.f6d9.9276 N/A N/A 7.1(9
)E4

Mod SSM Application Name Status SSM Application Version
--- ------------------------------ ---------------- --------------------------
ips IPS Up 7.1(9)
E4

Mod Status Data Plane Status Compatibility
--- ------------------ --------------------- -------------
0 Up Sys Not Applicable
ips Up
Up

Mod License Name License Status Time Remaining
--- -------------- --------------- ---------------
ips IPS Module Enabled perpetu
al

We know that ASA failover algorithm do a lot of ckecks and one of this check is to monitor modules. As we can see on the output after upgrade to version 9.4.1 NEW module appears on standby unit: cxsc and sfr as we can see. On Active unit there are no such modules. May be standby unit can’t check the state, or Active unit cant interpret standby unit messages, I dont know realy (

He had questions:

1) Why this new modues appeared, for what for, how they work...?

2) Can I upgrade my Cisco ASAs till that version?

3) What I shuld do to upgrdade? I need this upgrade very much, because I need Policy Based Routing functionality?

4) Can I do upgrade without interruption ?

Someone solved it and answered like this: “Yes, complete your upgrade on the active unit and it will show the same unknown status for the cxsc and sfr modules. Once you do that successfully, you should have a healthy HA pair.

Support for cxsc and sfr as module types was introduced in versions 9.1(1) and 9.2(2) respectively.

You can stick with your ips (classic IPS module) as long as it's meeting your needs. It is end of sales now (as is the CX module shortly) and both are deprecated in favor of the newer "sfr" or FirePOWER module. More about FirePOWER is on the product data sheet (and elsewhere).”

What’s your ideas, welcome to share here…

The Case From https://supportforums.cisco.com/discussion/12526776/failover-problem-cisco-asa-5525x-after-upgrade-version-941

More Related

Cisco ASA 5506-X with Version 9.4.1–Policy Based Routing

Why Cisco ASA Clustering?

What are the Considerations While Buying a Cisco Next-Generation Firewall?

Read more

Picking Out Your Core Switch

June 23 2015 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Switches - Cisco Firewall

If you want to design data center or campus LAN with Cisco products, Cisco has many options for you. So it’s not easy to select the right one according to your actual needs. In this article, we just give you some look on this. Go and find more information for your own special case. (Note: In this article it is gravitated towards having L3 features incorporated as well (not an L2-only implementation).

Nexus 5500

We take this option of Nexus 5500 here in the beginning anyway. Nexus 5500 (5548P, 5548UP, 5596UP) supports all 4094 VLANs and all the ports are 10G with 1G ability as well. When equipped with L3 forwarding module it has the features that are enough for many situations. 5548 has 32 fixed ports (one module slot for 16-port module) and 5596 has 48 fixed ports (three slots for 16-port modules). With Nexus 5500 you at least know in advance how many ports you can get when you by them (compared to the modular switches that have different port densities in different line cards in different oversubscription levels in different generations).

In Nexus family the important advantage is the FEX selection: remote line cards in top of the rack implementations. That also brings one major limitation: with current software (NX-OS 5.1(3)N1) only 8 FEXes are supported when L3 module is used. If you single-home your FEXes then you can have a total of 16 FEXes with each Nexus 5500 pair (you implement core switches in pairs, right?). When dual-homing the FEXes then the maximum total number is of course 8 because all FEXes are seen by both Nexus 5500.

Nexus 5500 switches only have one supervisor but Cisco still boasts that it supports ISSU (In-Service Software Upgrade). However, ISSU is not supported with L3 module installed. Depending on your environment (and FEXing style [can you say that?]) that may or may not be an important factor for you. When dual-homing everything it may not be so big deal after all.

Also, when comparing Nexus 5500 L3 features with bigger core switches you need to make sure that you know your route and MAC address limitations, as always.

Cisco Catalyst 6500

Catalyst 6500 is the good old DC and campus core switch. With modern supervisors and line cards it can really kick the frames through the rich services it provides in the same box. Plenty of chassis choices for different installations and requirements, as well as line cards and service modules. Do I need to say more? You can “dual-everything”, use VSS to combine two chassis together and so on. Cat6500 can do almost anything you can imagine. It may not be absolutely the fastest, but hey, if you needed the ultimate raw speed you would have selected Nexus 7000 anyway, you remember? Btw, 160 gigs per slot was announced to be coming for Cat6500 so that gives some picture of the situation.

Catalyst 4500

How about Catalyst 4500? A user said like that: “I don’t know Catalyst 4500 very well in core use. My first experiences from Catalyst 4000 were with a separate 4232-L3-whatever module, and it was horrible to configure (CatOS on the supervisor, IOS on the L3 module, internal GEC trunk between those). And Catalyst 4500 (or should I say 4500E?) is totally different: supervisors worth of 7 or so generations (running IOS or IOS-XE), line cards almost as many generations, different chassis generations, and so on. Current maximum bandwidth per slot seems to be 48 Gbps per slot with Sup7E. The supervisor still does all the forwarding for the line cards. Catalyst 4500 does not provide any separate service modules but it provides a set of IOS features. There are also various chassis sizes. In short: not very exciting option for a LAN core but may work well for you.” Well, what’s your experience about Catalyst 4500? Share with us, please!

Catalyst 4500-X

The newcomer in Catalyst family is Catalyst 4500-X. They are 1U switches with a small expansion module slot. The base ports (16 or 32) are 1G/10G ports and the expansion module is promised to have 40G ports available later. (But again, your DC is apparently not needing those.) Cat4500-X runs IOS-XE and supports VSS to cluster two switches together. If your access layer is not very wide you could run your core with Cat4500-X.

And then there is more DC-grade stuff:

  • Nexus 3000: L2/L3 10G switch but more oriented to low-latency implementations with no special feature requirements
  • Catalyst 4948, Catalyst 4900M, and so on: The features are similar to Catalyst 4500 but in smaller box with limited number of interfaces available.

…In fact, we can talk more about the Cisco’s Core Switches. If you have any ideas and experience about the Cisco Core Switches, it’s so excited that you can share them with us.

More about Cisco switches’ topics you can read here: http://blog.router-switch.com/category/reviews/cisco-switches/

Read more

Types of Cisco Ethernet Switches

May 21 2015 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Switches - Cisco Firewall

Modular and Fixed Configuration, these two are the main categories of Cisco Ethernet switches.

Modular switches, modular, as the name implies, allows you to add expansion modules into the switches as needed, thereby delivering the best flexibility to address changing networks. Examples of expansion modules are application-specific (such as Firewall, Wireless, or Network Analysis), modules for additional interfaces, power supplies, or cooling fans. Cisco Catalyst 4K and 6K (including Cisco Nexus 7000 Series Switches, Catalyst 6800 Series Switches, Catalyst 6500 Series Switches, Catalyst 4500-X Series Switches, Catalyst 3850 Fiber Switch Models) are good examples of Modular switches.

Fixed Configuration switches are switches with a fixed number of ports and are typically not expandable. This category is discussed in further detail below. Cisco Catalyst 2K, 3K (contains Catalyst 4500E Series Switches, Catalyst 3850 Series Switches, Catalyst 3650 Series Switches and Catalyst 2960-X Series Switches) and the Cisco300/500 series (Cisco 100 Series Unmanaged Switches, 200 Series Smart Switches, 220 Series Smart Plus Switches, 300 Series Managed Switches, 500 Series Stackable Managed Switches, and Catalyst 2960, 2960-C and 2960-S Series Switches) are good examples of Fixed Configuration switches.

The Fixed configuration switch category is further broken down into:

–Unmanaged Switches

–Smart Switches

–Managed L2 and L3 Switches

Unmanaged Switches

This category of switch is the most cost effective for deployment scenarios that require only basic layer 2 switching and connectivity. As such, they fit best when you need a few extra ports on your desk, in a lab, in a conference room, or even at home.

With some unmanaged switches in the market, you can even get capabilities such as cable diagnostics, prioritization of traffic using default QoS settings, Energy savings capabilities using EEE (Energy Efficient Ethernet) and even PoE (Power over Ethernet). However, as the name implies, these switches generally cannot be modified/managed. You simply plug them in and they require no configuration at all.

Cisco 100 Series switches are good examples of this category.

Smart Switches (also known as Lightly Managed Switches):

This category of switches is the most blurred and fastest changing. The general rule here is that these switches offer certain levels of Management, QoS, Security, etc. but is “lighter” in capabilities and less scalable than the Managed switches. It therefore makes them a cost-effective alternative to Managed switches. As such, Smart switches fit best at the edge of a large network (with Managed Switches being used in the core), as the infrastructure for smaller deployments, or for low complexity networks in general.

The capabilities available for this Smart switch category vary widely. All of these devices have an interface for Management – historically a browser-based interface used to be the only way to configure these devices, though nowadays you can manage some of these devices with CLI and/or SNMP/RMON as well. Regardless, these capabilities are lighter than what you will find in their Managed switch counterparts. Smart switches tend to have a management interface that is more simplified than what Managed Switches offer.

Smart switches allow you to segment the network into workgroups by creating VLANs, though with a lower number of VLANs and nodes (MAC addresses) than you’d get with a Managed switch.

They also offer some levels of security, such as 802.1x endpoint authentication, and in some cases with limited numbers of ACLs (access control lists), though the levels of control and granularity would not be the same as a Managed switch.

In addition, Smart switches support basic quality-of-service (QoS) that facilitates prioritization of users and applications based on 802.1q/TOS/DSCP, thereby making it quite a versatile solution.

Cisco 200 Series switches are good examples of this category.

Fully Managed L2 and L3 switches

Managed Switches are designed to deliver the most comprehensive set of features to provide the best application experience, the highest levels of security, the most precise control and management of the network, and offer the greatest scalability in the Fixed Configuration category of Switches. As a result, they are usually deployed as aggregation/access switches in very large networks or as core switches in relatively smaller networks. Managed switches should support both L2 switching and L3 IP routing though you’ll find some with only L2 switching support.

From a Security perspective, Managed switches provide protection of the data plane (User traffic being forwarded), control plane (traffic being communicated between networking devices to ensure user traffic goes to the right destination), and management plane (traffic used to manage the network or device itself). Managed switches also offer network storm control, denial-of-service protection, and much more.

The Access Control List capabilities allows for flexibly dropping, rate limiting, mirroring, or logging of traffic by L2 address, L3 address, TCP/UDP port numbers, Ethernet type, ICMP or TCP flags, etc.

Managed switches are rich in features that enable them to protect themselves and the network from deliberate or unintended Denial of Service attacks. It includes Dynamic ARP Inspection, IPv4 DHCP snooping, IPv6 First Hop Security with RA Guard, ND Inspection, Neighbor Binding Integrity, and much more.

Additional Security capabilities may include Private VLANs for securing communities of users or device isolation, Secure Management (downloads through SCP, Web-based Authentication, Radius/TACACS AAA, etc), Control Plane Policing (CoPP) for protecting the CPU of the switch, richer support for 802.1x (time-based, Dynamic VLAN Assignment, port/host-based, etc)

From a Scalability perspective, these devices have large table sizes so that you can create large numbers of VLANs (for workgroups), devices (MAC table size), IP routes, and ACL policies for flow-based security/QoS purposes, etc.

For highest network availability and uptime, Managed switches support L3 redundancy using VRRP (Virtual Router Redundancy Protocol), large numbers of Link Aggregation groups (which is used both for scalability and resiliency), and capabilities for protecting L2 such as Spanning Tree Root Guard and BPDU Guard.

When we talk about QoS and Multicast features, the richness of capabilities goes far beyond what you’d see in a Smart Switch. Here you’d see things such as IGMP and MLD Snooping with Querier functions for optimizing IPv4/v6 multicast traffic in the LAN, TCP Congestion Avoidance, 4 or 8 queues to treat traffic differently by importance, setting/tagging traffic by L2 (802.1p) or L3 (DSCP/TOS), and rate limiting traffic.

In terms of Management, things such as multiple ways to configure (using CLI, Web GUI, SNMP Management application), discovering of neighbor devices in the networks (using CDP, LLDP, Bonjour, etc), and troubleshooting capabilities (such as VLAN and Port Mirroring, Traceroute, Ping, Syslog, Cable Diagnostics, RMON, etc) are all included. What I highlighted is by no means exhaustive, but gives you a sense of what some of the differences may be between Managed and Smart Switches.

Cisco Catalyst and Cisco 300 Series and 500 Series switches are good examples of this category of products.

Managed Switches can go even further than what I’ve highlighted. For example, there’s even richer support for Dynamic Unicast and Multicast Routing protocols, deeper flow intelligence or macro flow statistics with Netflow/SFlow, non-Stop Forwarding capabilities, MPLS/VRF support, Policy enforcement, and many others.

Now, to take a deeper dive into these switch categories and talk about various options, you can select the switches based on:

– Speed

– Number of ports

– POE versus non-POE

– Stackable versus Standalone

Speed

You can find Fixed Configuration switches in Fast Ethernet (10/100 Mbps), Gigabit Ethernet (10/100/1000 Mbps), Ten Gigabit (10/100/1000/10000 Mbps) and even some 40/100 Gbps speeds. These switches have a number of uplink ports and a number of downlink ports. Downlinks connect to end users – uplinks connect to other Switches or to the network infrastructure. Currently, Gigabit is the most popular interface speed though Fast Ethernet is still widely used, especially in price-sensitive environments. Ten Gigabit has been growing rapidly, especially in the datacenter and, as the cost comes down, it will continue to expand into more network applications. With 10GBase-T Ten Gigabit copper interfaces being integrated into LOM (LAN on the Motherboard) and 10G-Base-T switches becoming available now (see the new Cisco SG500XG-8F8T 16-port 10-Gigabit switch), building a Storage or Server farm with 10 Gigabit interfaces has never been easier or more cost-effective. 40G/100G is still emerging and will be mainstream in a few years.

Number of ports

Fixed Configuration Switches typically come in 5, 8, 10, 16, 24, 28, 48, and 52-port configurations. These ports may be a combination of SFP/SFP+ slots for fiber connectivity, but more commonly they are copper ports with RJ-45 connectors on the front, allowing for distances up to 100 meters. With Fiber SFP modules, you can go distances up to 40 kilometers

POE versus non-POE

Power over Ethernet is a capability that facilitates powering a device (such as an IP phone, IP Surveillance Camera, or Wireless Access Point) over the same cable as the data traffic. One of the advantages of PoE is the flexibility it provides in allowing you to easily place endpoints anywhere in the business, even places where it might be difficult to run a power outlet. One example is that you can place a Wireless Access Point inside a wall or ceiling.

Switches deliver power according to a few standards – IEEE 802.3af delivers power up to 15.4 Watts on a switch port whereas IEEE 802.3at (also known as POE+) delivers power up to 30 Watts on a switch port. For most endpoints, 802.3af is sufficient but there are devices, such as Video phones or Access Points with multiple radios, which have higher power needs. It’s important to point out that there are other PoE standards currently being developed that will deliver even high levels of power for future applications. Switches have a power budget set aside for running the switch itself, and also an amount of power dedicated for POE endpoints.

To find the switch that is right for you, all you need to do is choose a switch according to your power needs. When connecting to desktops or other types of devices which do not require POE, the non-POE switches are a more cost-effective option.

Stackable versus Standalone

As the network grows, you will need more switches to provide network connectivity to the growing number of devices in the network. When using Standalone switches, each switch is managed, troubleshot, and configured as an individual entity.

In contrast, Stackable switches provide a way to simplify and increase the availability of the network. Instead of configuring, managing, and troubleshooting eight 48-port switches individually, you can manage all eight like a single unit using a Stackable Switches. With a true Stackable Switch, those eight switches (total 384 ports) function as a single switch–there is a single SNMP/RMON agent, single Spanning Tree domain, single CLI or Web interface–i.e. single management plane. You can also create link aggregation groups spanning across multiple units in the stack, port mirror traffic from one unit in the stack to another, or setup ACLs/QoS spanning all the units. There are valuable operational advantages to be gained by this approach.

Here’s a word of warning. Be careful about products in the market which are sold as “Stackable” when they merely offer a single user interface, or central management interface, for getting to each individual switch unit. This approach is not stackable, but really “clustering”. You still have to configure every feature such as ACLs, QoS, Port mirroring, etc, individually on each switch. Use the following as a proof point – can I create a link aggregation group with one port in one unit of the stack and another port of that group in another unit of the stack? Can I select a port on one unit in the stack and mirror the traffic to a port on another unit of the stack? When I configure an ACL for Security purposes, can I apply that to any port on any unit in the stack? If the answer is “No” to any of these questions, you’re probably not working with a stackable switch.

There are other advantages of True Stacking as well. You can connect the stack members in a ring such that, if a port or cable fails, the stack will automatically route around that failure, many times at microsecond speeds. You can also add or subtract stack members and have it automatically recognized and added into the stack.

Cisco Catalyst 2K-X and 3K or Cisco 500 Series Switches are examples of Switches in this category.

As you can see there’s a multitude of switch options to choose from. So, have a close look at your current deployment and future needs to determine the right switch for your network.

Guide and Review from http://blogs.cisco.com/smallbusiness/understanding-the-different-types-of-ethernet-switches

More Related Cisco Switches Topics you can read here:

http://blog.router-switch.com/category/reviews/cisco-switches/

Read more

Cisco Nexus 9000 Series Switches for Classic Network Design

May 14 2015 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Switches - Cisco Firewall

Classic Three-Tier Data Center Design

Classic Three-Tier Data Center Design

Current Cisco Nexus Portfolio Scenarios for Transitioning to Cisco Nexus 9000 Series
Current Cisco Nexus Portfolio Scenarios for Transitioning to Cisco Nexus 9000 Series

It’s so cool that Cisco Nexus 9000 series, through their dual-mode capabilities, allow you to deploy them as traditional switches within your existing data center network. Cisco Nexus 9000 Series Switches are ideal for small-to-medium-sized data centers, it makes the next generation of data center switching accessible to customers of any size. And what’s the data center? Why is it so important? The data center infrastructure is central to the overall IT architecture. It is where most business-critical applications are hosted and various types of services are provided to the business. A classic network is the typical three-tier architecture commonly deployed in many data center environments. It has distinct core, aggregation, and access layers, which together provide the foundation for any data center design.

Note: The figure above shows a classic design using the current Cisco Nexus product portfolio, including Cisco Nexus 7000 Series Switches and 2000 Series Fabric Extenders (FEXs). You can use this three-tier design to migrate to the new Cisco Nexus 9000 Series Switches.

Many types of services, primarily firewalls and load balancers, can be integrated into these designs. Careful planning is needed for a smooth migration from this type of hardware and topology combination to the new Cisco Nexus 9000 Series hardware and topology combination.

The main features of the new Cisco Nexus 9000 Series are support for FEX, virtual Port Channel (vPC), and Virtual Extensible LAN (VXLAN). The data center architecture can be deployed in a classic design in which existing designs variations are supported, such as the following:

● Data center pods

● Large-scale multitier designs

● VXLAN fabric

…More about data center design and Nexus switches including Nexus 7000, Nexus 9000 family you can read the full info page: http://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/guide-c07-730115.pdf

More Related Cisco Nexus 9000 Topics

New: ACI Alternative for Cisco Nexus 9000

Cisco Nexus 9500 Comparison-Chassis, Supervisors and Modules…

Cisco Nexus 9000 Series Switches Overview

Cisco 9500 Nexus Switch Overview-Model Comparison

Cisco Nexus 9000 Models Comparison: Nexus 9500 & Nexus 9300 Series

Three Cisco Nexus 9300 Models Overview

The 8-slot Nexus 9508 Switch Review

Read more

User Guide: Use nProbe as NetFlow-Lite Aggregator

May 8 2015 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Switches - Cisco Firewall

Do you know how to use nProbe as NetFlow-Lite Collector? What’s the problem of NetFlow-Lite? What’s the typical nProbe Deployment? And how does the NetFlow-Lite Support in nProbe? In this article, we will share the main info related to these questions.

Problem Statement-NetFlow-Lite

• NetFlow-Lite brings visibility to switched networks.

• NetFlow-Lite are exports in v9/IPFIX format and contain packets sections.

• Legacy NetFlow collectors need additional support to understand and analyze NetFlowlite flows.

More Related NetFlow-Lite Topics

How to Use nProbe as NetFlow-Lite Aggregator/Collector?

Cisco Catalyst 4948E NetFlow-lite/NFLite in Detail

What is nProbe ?

What is nProbe ?

Typical nProbe Deployment

Typical nProbe Deployment

NetFlow-Lite Support in nProbe-01

NetFlow-Lite Support in nProbe-01

NetFlow-Lite Support in nProbe-02

NetFlow-Lite Support in nProbe-02

Final Remarks-NetFlow-Lite

Final Remarks-NetFlow-Lite

Read more

Cisco NetFlow-Lite on the Cisco Catalyst 2960-X, 2960-XR, 2960-CX, and 3560-CX Series Switches

May 7 2015 , Written by Cisco & Cisco Router, Network Switch Published on #Cisco Switches - Cisco Firewall

Output from Cisco NetFlow-Lite

Output from Cisco NetFlow-Lite

Differences between Flexible NetFlow-Lite, Flexible NetFlow, and sFlow
Differences between Flexible NetFlow-Lite, Flexible NetFlow, and sFlow

We discussed the Cisco Catalyst 4948E NetFlow-lite/NFLite before. What’s the difference between the NetFlow and Netflow-Lite? We knew that NetFlow-lite was first introduced with Catalyst 4948E, and it bridges the gap by providing a lightweight solution that allows capturing of important flow information through packet sampling mechanisms combined with the extensibility of NetFlow version 9 and IPFIX. NetFlow-Lite introduces traffic visibility on the Cisco Catalyst 2960-X, 2960-XR, 2960-CX, and 3560-CX Series Switches for the first time.

NetFlow-Lite collects packets randomly, classifies them into flows, and measures flow statistics as they pass through the switch. It is a true flow-based traffic-monitoring mechanism that conserves valuable forwarding bandwidth when exporting flow-based data for analysis and reporting.

In the following part it provides visibility into traffic that is switched through the Cisco Catalyst 2960-X, 2960-XR, 2960-CX, and 3560-CX Series Switches.

Firstly we can read what NetFlow-Lite is used for again

NetFlow-Lite offers network administrators and engineers the following capabilities:

Unprecedented visibility: NetFlow-Lite provides real-time information about traffic flows from endpoints such as PCs, phones, IP cameras, etc. You can use this information for traffic monitoring of Layer 2 and Layer 3 traffic as well as capacity planning.

Network planning: You can use NetFlow-Lite to capture data over a long period of time so that customers can understand traffic patterns, top talkers, top applications, etc. This feature provides accurate data to track and anticipate network growth and plan upgrades.

Simplified troubleshooting: You can use NetFlow-Lite flow-based analysis techniques to understand traffic patterns, which can help in proactively detecting problems, troubleshooting efficiently, and resolving problems quickly.

NetFlow-Lite Capabilities

NetFlow-Lite provides a granular packet-sampling mechanism that is adjustable up to 1:32 and available for all interfaces. The implication is that a subset of all packets passing through the switch is selected for reporting.

NetFlow-Lite on the Cisco Catalyst 2960-X, 2960-XR, 2960-CX, and 3560-CX Series Switches have the following capabilities:

  • NetFlow-Lite is supported on all downlink and uplink ports.
  • NetFlow-Lite is natively available with no additional hardware required.
  • The sampling range is from 1:32 to 1:1022.
  • The application measures 16,000 flows per switch.
  • Physical ports and VLAN Interfaces (switched virtual interfaces [SVI]) are supported.
  • NetFlow-Lite supports ingress flows only.
  • Export using standards-based IP Information export (IPFIX) or Version 9 record format.

NetFlow-Lite Sampling Techniques

The sampling method of the traffic can be random or deterministic. Random sampling chooses one packet randomly out of a configured sample size, whereas deterministic sampling chooses the first packet out of a configured sample size. For example, for 1:32 sampling, deterministic mode would choose the 1st, 33rd, 65th, 97th, and so on packet coming into an interface, and random mode can choose the 5th, 39th, 72nd, 103rd, and so on packet coming into an interface. Random packet sampling is statistically more accurate than deterministic packet sampling.

NetFlow-Lite Solution-NetFlow-Lite configuration on the Cisco Catalyst 2960-X, 2960-XR, 2960-CX, and 3560-CX Series Switches

Steps-Only 5 Steps

Step1. Configure a Flow Record, which defines the data collection. You can customize it for specific requirements. You can use the following example with most NetFlow collectors:

flow record v4

 match ipv4 tos

 match ipv4 protocol

 match ipv4 source address

 match ipv4 destination address

 match transport source-port

 match transport destination-port

 collect transport tcp flags

 collect interface input

 collect flow sampler

 collect counter bytes long

 collect counter packets long

 collect timestamp sys-uptime first

 collect timestamp sys-uptime last

Step2. Configure a Flow Exporter, which defines where the collected data needs to be sent. Please refer to the NetFlow collector application user guides and manual for specific details such as port number, differentiated services code point (DSCP), and other options. The configuration follows:

flow exporter Replicator

 description Exporter to Cisco Prime 2.0

 destination 10.2.44.12

 source GigabitEthernet1/0/1

 dscp 16

 template data timeout 60

 option interface-table

Step3. Configure a Flow Monitor, which binds the flow record and exporter along with options to configure the flow cache:

flow monitor v4

 record v4

 exporter Replicator

 cache timeout active 30

Step4. Configure a Flow Sampler. Define the sampling technique and sample size. The configuration follows:

sampler v4

 mode random 1 out-of 32

Step5. Attach the Flow Monitor and Sampler to the interface:

interface GigabitEthernet1/0/1

 ip flow monitor v4 sampler v4 input

Reference from http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-2960-x-series-switches/solution_overview_c22-728776.html

Lists the License and Software Requirements for Cisco Netflow-Lite

Lists the License and Software Requirements for Cisco Netflow-Lite

Read more
<< < 1 2 3 4 5 6 7 8 9 10 > >>